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Abstract-A uniform prismatic elastic element in small displacements theory can be modeled as
consisting of ex.tension. torsion and flex.ural elements acting in parallel. The ex.tension and torsion
elements are unimodal. whereas the flexural elements are bimodal. due to the combined action of
bending moments and shear forces. This dissimilarity between the elements is the source of incon
sistency between the analysis of a truss and a fram~-d structure. especially in a force approach. It is
shown that by an appropriate change of basis. one can uncouple the flex.ural element into a unimodal
moment element which carries the average moment of the clement. and a unimodal shear element
which carries the shear force and related moment. As a result anv framed structure can be viewed
as a generalized truss ,lnd an'llyzed accordingly in a standard for~.

It is further shown that it is possible to physically construct a moment element and a shear
element. bOlh ex.hibiting unimodal derllrmation patterns. Consequently one can repl'lce a classical
beam element hy a moment clement and a shear clement assembled in parallel. The appro'lI:h is
tested numerically in the C.ISI: of be.lms of constant heighl subjected to several loading condilions.
Preliminary results indic'lte that in theory. substanti'll weight reductions can be obtained when
designing structures compllsed of parallclunimodal clements.

I. INTRODUCTION

Consider a uniform, prismatic, straight dement connected to nodes A and II in 3-dimen
sional space. It is assumed that the dement cross-section exhibits two planes of symmetry
and the dement is loaded only at its extremities. Within the small displacements theory of
structural analysis and neglecting the dlcct of deformations due to shearing stresses, if the
six nodal displacements of each node arc given arbitrary values, the dement deformation
pattern can be defined by the generalized strain vector e

(I)

where (5 is the dement total elongation, 0AI and (Jill arc the end-rotations with respect to
the chord All in the first plane of symmetry. ex is the rdative torsion rotation of nodes A
and B. and lJA1 and 011: are the end-rotations with respect to the chord A B in the second
plane of symmetry.

Corresponding to the generalized strain vector we have the generalized stress vector t

(2)

where II is the axial load in the clement, 11IAI and 1118' are the end moments in plane one, Cf
is the torsional moment and 111"1 and m8: are the end moments in plane two.

The six strain components arc related to the six stress components by the linear
constitutive law

t = Se

which are the following quasi uncoupled equations
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(4a)

(4b)

(4c)

where S is the element natural stiffness matrix. L is the element length. E is Young's
modulus. G is the shear modulus. A is the element cross-sectional area. J is the torsional
constant and II and I~ are the moments of inertia in both planes of symmetry. We notice
the uncoupling of the stretching mode. twisting mode and bending modes in both planes
of symmetry. Stretching and twisting are both unimodal patterns since they are described
by one generalized strain (15 and :x). Bending. however, is bimodal since it is defined in each
plane of symmetry by two strain components (OAI and 00,),

The subject matter of this paper is concerned with the uncoupling of the bending
pattern into two orthogonal deformations. a pure bending mode and a "pure" shear mode.
This will lead to full uncoupling of all six deformation patterns of the prismatic element.
which will result in a unified and also simplified approach to the analysis of framed
strm:tures. It will also be shown more specifically that the uncoupling of the moment and
shear deformations may lead to improved designs of beam structures.

Before concluding this section, a last remark. Over the years of teaching structural
theory I was asked by many a student. the reason why the shear force docs not appear in
the stress strain relations (3). The painstaking reply would invariahly be that the shear force
is implied in the end moments m.\ and mn. This would however not quench their curiosity
the shear force was still missing in eqn (3) even after the explanation. The present theory
makes the shear force appear explictly in the stress strain relations and in the author's view.
this settles the question.

2. UNCOUPLED BENDING DEFORMATIONS

Consider the stress-strain relationship of the bending deformation in one of the planes
of symmetry ofan element (4b). Symbolically. these equations are represented by the stress
strain relations (3) where we consider only the two equations pertinent to bending, in
one plane of symmetry. An eigenvalue analysis of the bending stiffness matrix yields the
characteristic eigenvalues 2(£11L) and 6( EllL). and the corresponding eigenmatrix

r = [ 0.5 0.5J.
-0.5 0.5

(5)

We have chosen this eigenmatrix in order to relate the eigenvectors to appropri'lte structural
quantities. as will become clear in the following. The two eigenvectors correspond respec
tively. to a symmetric and <Intisymmetric deformation p<lltern.

Performing the ch'lIlge of basis (6a) and using the eigenmatrix (5). we obtain the
transformed stress vector (6b) and stiffness matrix (6c)

e= re' (6a)

f = rtt (6b)

S· = rTsr. (6c)

where tagged quantities are written in transformed coordinates.
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Solving eqn (6a) and perf(jtming the matrix multiplications in eqns (6b. 6c) yields the
expressions of the transformed strain and stress components and the diagonal stiffness
matrix

(7a)

(7b)

(7c)

To gain insight into eqns (7). consider the deformation pattern of a beam element in Fig.
lao The original generalized strains and stresses are the relative end-rotations (OA' liB) and
end moments (mA. mB) of the beam. We know that these quantities are coupled. Through
the change of basis (7) we have established that the beam deformation is in fact the sum of
two orthogonal deformation patterns. a symmetric mode characterized by the generalized
strain 4J. and an antisymmetric mode characterized by the generalized strain"'. The physical
interpretation of these strains is indicated in the figure. From eqns (7b). it is straightforward
that the generalized stress component in the symmetric mode is the average bending moment
m of the beam. and that the stress component in the antisymmetric mode is sL/2 where s
is the constant shear force of the beam span.

Finally. since the transformed stiffness matrix is diagonal. we obtain the following.
uncoupled stress-strain relations for bending

(£/)
fit = i. cp

sf. = (." £1).,.
2 . L .".

(Ra)

(8b)

Focussing our attention on the moment distribution diagrams in Fig. I we note that
the symmetric mode carries the average bending moment. without shear. and that the

I1II II)
m
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m
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Fig. I. Bending element deformation pattern.
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antisymmetric mode carries the shear force and corresponding differential bending distri
bution. The sum of the two orthogonal moment diagrams is equal to the moment diagram
of the beam. SimHarily the sum of the two orthogonal deformation patterns is equal to the
deformation of the beam element.

We have established that in essence. the bending behaviour of a beam element is
composed of two orthogonal patterns. The symmetric deformation causes the beam to
deform in pure moment (8a). The antisymmetric deformation (8b) causes the beam to
deform in "pure" shear. Rewriting eqns (I), (2) and (4) using the new bending coordinates.
we obtain the following strain. stress and diagonal stiffness components

e = (<5 cPl t/Jl :x c/J~ "'~) T (9a)

t = (n s,L
\LJ (9b)Ill, ., q III~

k = (EA Ell 3EI I GJ £/~ 3El~J (9c)
LL L LL L'

These are the six orthogonal deformation patterns of the beam clement: extension and
torsion. and moment and shear in both planes of symmetry.

3. A UNIFIED THEORY OF STRUCTURAL ANALYSIS

In the classical theory of prismatic structures it is recognized that a member can be
visualized as being composed of four generic elements. attached in p'lrallel to the element
nodes and which dd"mn in orthogonal patterns: extension. torsion and bending in orthog
0(1'11 planes of symmetry. The stretching and torsion deformations arc unimodal and cun
be treated in a similar manner. Bending. however. is ditlcrent. It is inl1uenced by two
coupled quantities. the bending momcnt and the she.lr force.

The coupling of the bending moment and the she'lr force in beam elements is the source
ofsome dissimilarity hetween the analysis of redundant trusses and the analysis of redundant
beam structures when using a force method. A st'ltically redundant truss can usually be
rendered determimlte by removing a suitable subset of superl1uous bars. In the C.ISC of
beams however. as shown for instance in McGuire and Gallagher (1979). one introduces
"cuts" in the structure releasing either stress resultants or support reactions. The basic
structure here is not a subset of the original structure but rather the original structure. cut
open at distinct locations. The dilferenee is not merely semantic. One h.ls to include the
unknown support reuctions in the equilibrium equations. a requirement which is not
necessary in a truss-type analysis. This is the source of a score of algorithmic complications
in a computerized implementation of thc process. In the present approach. and after the
change of coordinates at the beam clement level. we can formulate a unified theory of
strll<:tural analysis where all the generic elements 'Ire treated in exm:tly the same manner.

A straight prismatic member can be modeled as six unimodal. orthogonal elements
connected in p'lrallel. Each clement has its own natural stiffness k; (9c). If the end nodes
arc given small arbitrary displacements. each clement deforms in its natural strain modc l',
(9a), The end lo'lds acting on each c1emcnt arc I, :::: k,£',. The strain energy in the member
is the sum of the strain energies of the six clements

I h ,

U =., L k,l',-.
-,,-,1

( 10)

The analysis of a prismatic structure is now. in all respects. similar to the analysis of a
generalized truss where each mcmbcr is decomposed into six parallel elements. Let u and p
bc thc ,V-vectors of unconstrained nodal displacements and nodal loads. respectively. in
global coordinates. Let S be the unassembled diagonal matrix of the stiffness of the clements
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of the structure (size == 6"'1 where M is the number of members). and let t and e be the
corresponding generalized stresses and deformations ofall the elements. The basic equations
for analyzing the structure are

Qt == p Equilibrium

Ru =e Strain-displacement

Se = t Constitutive law. (II)

where Q is the statics matrix and R = QT is the kinematics matrix. Simple substitution leads
to the equilibrium equations of the Displacement method

Ku = p; K = QSR. ( 12)

The elegance of the present approach emerges even more in the Force method. The
degree of statical redundancy of the structure is (6M - N). The structure can be made
determinate by (physically) removing (M-/ - N) redundant elements. This corresponds to
finding un N x N non-singular submatrix in Q. Any simplex type algorithm can be employed
for that purpose. The eliminated elements may include axial. moment. she'lr or torsion
elements from any of the members of the structures. Matrices Q and S and vectors c and t
are subdivided accordingly. Using subscript b for the basic structure and subs~ript r for the
redundant elements. eqns (12) can be rewritten as detailed in Fuchs ( IlJX:!)

Q"t" +Q,t, = P

S"C'" = t,,; S,C', = t,.

(I Ja)

( Db)

( IJc)

Compatibility in terms ofelement strains is obt4lined by eliminating the nodal displacements
from eqns (l3b)

( 14)

which ufter substitution yields the compatibility equations in terms of clement stresses

(15)

where the Fs are the diagonal matrices of element flexibilities.
To complete the picture. consider the computation of a nod'll displacement by the unit

load method

( 16)

where subscript m is the member number. subscript i is the unimodul clement number ~tnd

the ,:!..l arc clement stresses due to a unit load in the j direction. The summation includes
terms of the type

( 17)

which are the contributions of the shear forces to the total deformation of the structure.
Shear deformation is thus given its proper place in structural an<llysis. These deformations
originate from the normal stresses due to shear and cannot be negh:cted. The deformations
derived from the tangential stresses due to shear are those which are usually omitted.
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4. UNIMODAL BEAM ELEMENTS

The main result obtained so far. is that a prismatic beam element (bimodal element)
is mathematically equivalent to two unimodal elements mounted in parallel. a moment
element and a shear element. When the nodes are given symmetric rotations COB = -OA in
eqn (1a)) the moment element is strained and reacts in pure bending with a stiffness given
by eqn (8a). The shear element remains unstrained (t/J =0) and consequently has zero
stiffness in a symmetric deformation pattern. Similarly. if the nodes rotate anti·sym
metrically [OA =0B in eqn (7a)] the shear element is strained and reacts in pure shear. with
a stiffness given by eqn (8b). The moment element is not stmined (</:I = 0). i.e. it has zero
stiffness in an anti-symmetric pattern. If the nodes are given arbitrary rotations. the moment
element takes the symmetric part of the deformation and the shear element takes the anti
symmetric part of the deformation.

A question which comes to mind is whether the moment element ,lOd the shear element
can be given a physical reality. In other words. can we construct a moment beam and a
she.u beam. In the atlirmative. a following question would be whether there is any advantage
in using a moment beam and a shear beam mounted in parallel instead ofa regular bimodal
beam. We will address the first of these two questions in this section.

Consider a straight uniform beam with a frictionless. normal guide at mid-span (Fig.
2a. left). The stress-strain relations of this element are

-IJ{O,,}
I 08 '

(18)

Applying the change of basis (5) -(7) to these equations one obtains the mod'll equilibrium
equ'ltions

{//I} = EI [I OJ {t/,}.
.\/. /. 0 0 t/J
2

( 19)

These are exactly the equ.ttions of a moment clement. This clement has a stiffness of Ell L
in pure bending••ll1d no stiffness in pure shear. Figures 2b and 2e show dearly that this
beam has .1 deformation in pure bending. but has a rigid·body displacement in pure shear.

Consider now a uniform beam with a frictionless hinge at mid-span (Fig. 2a, right).
The stress· strain rel'ltions are in this case

MOMENT ELEMENT SHEAR ELEMENT

A 9 A 9
CQ} ~ II ~ i> 0 ¢-

(A) 1/1=0

Cb) (~)

4>=0

(c) ,~) (~)
Fig. 2. Moment clement ;tnl! shear dement.
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{rnA} = £1 [3 3J {OA}.
rna L 3 3 Oa

which after the same change of basis. produces the modal equilibrium equations

539

(20)

(2\)

As expected these are the equations of a shear element. The element has a stiffness 3£1/L
in pure shear and no stiffness in pure bending. As can be seen in Figs 2b and 2c. the beam
deforms only when in pure shear but has a rigid-body displacement in pure bending.

If we add the load~eformation equations of the moment element and the shear
element [eqns (18) and (20)]. we obtain the relations of the uniform beam (4b). All this
leads to the conclusion that one can actually replace a uniform beam by a moment beam
and a shear beam (with same cross-sectional properties) mounted in parallel. The boundary
conditions of both beams are such that they must rotate with the same angles. OA and Oa.
The moment beam will carry the average moment m and the shear beam will carry the
shear s and related differential moments.

The displacement of each beam is. in general. composed of its natural deformation
pattern plus a rigid-body displacement for which the beam presents no stiffness. Consider
a typical assembly of a moment beam and a shear beam (Fig. 3). When subjected to
arbitrary end displacements «5,15\0)' the rigid-body motions result in a slope discontinuity
«5! - e5~) at mid-span in the shear beam and a transverse displacement discontinuity «5 ~ - <5 b )

at mid-span in the moment beam. given by

o
-I

(22)

A typical displacement pattern of a cantilever composed of parallel unimodal beams is also
shown in Fig. 3. The tip displacement is identical to what would have been obtained with
a regular (bimodal) uniform beam of the same stiffness. £1.

Ir-·--L----I

Fig. 3. Tip-loaded unimodal C".lntilever beam.

SAl l1:W
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Fig. 4. Analysis of a propped cantilever.

5. DESIGNING WITH UNIMODAL BEAM ElEMENTS

Consider the e~amplc of a propped. cantilever beam of uniform stiffness EI. spun L
and subjected to a concentmted force P at mid-spun (Fig. 4). If we replace section BC of
the structure by a p'lir of unimodal beams with S.lme EI. we emulate the structurul response
of the original be'lm. The nodal dispkll."Cments at Band C and the bending moment diagmm
in sl."ction AB arc the same. The bending moment in section BC is split between the moment
beam and the shear beam. At first glance there SI."Cms to be no obvious reason to replace
the original section BC by a pair of unimodal beams. since by doing so. one merely doubles
the weight of th'lt section.

However. one will notice that e.lch one of the unimodal beams is significantly ovcr
designed when compared to the original scction. since the nmximum bending moment in
the unim~)(htl beams is half the maximum bending moment in the original bemn (O.07R
compared to 0.156). One should bcar in mind that the unimodal be.lms have the same HI
as thc origin.t1 bcam. There is thercfore room to n:Juce Ihe stilfnesses of thc unimoJal
beams and increase their stress levels. Thus by using unimodal beams we design a morc
Ilexible structure while maintaining the weight of the originul structurc.

Further weight reduction C:'ln be obtainl.-u from the following argument. Since the
moment and shear beams arc two sepamte entities. there is no need to design both be.lfllS
with identical cross-sections. One can very well conceive designs with dilli:rent Els for the
moment beam and the shear be.lm. In fact. we will sec in the following that the introduction
of two independent design vuri'lbles for each unimodal beam is cardinal for the design of
e1Udent unimodal be.lm structures.

For this purpose. consider the design of the propped cantilever. loaded at the mid
span (Fig. 5). We will assume th.lt the beam clements are of constant height 11 and that the
weight of a beam is proportional to the cross-sectional area or the flanges. In the case of
the classical bimodal beams (Fig. Sa). the design varhlblcs are the moments of inertia Xl

and Xl of sections AB and BC, respt."Ctively. The objective function is the volume of the
clements (linear in the design vari'lbles) .tod the constraints of the problem are the maximum
stresses in each clement. The non-dimensional design vuriablcs x, and the non-dimensionul
allowable stress If. arc defined as

X, = l,/1I~ i = 1.2

if = 11(PL11I \).

where if is the allowable stress (in tension and compression).
The optimum design values and the minimum volume are:

x1 =0.100/fJ ; x! = 0.075/11

e* = 0.35L1I 1
/ fJ.

(23)
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Fig. 5. Optimum design of a propped cantilever.

At the minimum point the stresses (fA and (fnc reach the limiting stress value. The bending
moment diagram for the optimum design is given in Fig. 5.1. Note. the minimum volume
of the two-variable. propped cantilever is 6.7'Yo lower thun the minimum volume in the case
of a uniform cross-section ulong the entire beam. for which we have 1'* = O.375Lh~/lt.

Focusing our attention now on the optimum design of u propped cuntilever composed
of two pairs of unimodul beums (Fig. 5b). we note that we ure in the presence of a
minimization problem with four design vuriubles X, (i = 1.4). where the first two variubles
ure the non-dimensional moments of inertia of the moment und shear beams of section A B.
and the latter two vuriables ure the corresponding moments of inertia of section Be. The
optimum design vulues for the unimodul urrungement arc

xT = 0.0: xT = 1/24{1

x! = II 12/J: x: = 1/241J

1'* = 0.333Lh~1ft. (25)

It is importunt to emphusize at this point three properties of the design: (I) the optimum
value is lower than the optimum design obtained using bimodul clements [eqn (24)] which
is an encouraging result: (2) the moment beam of section A B has vanished from the design
thus yielding the structure shown at the bottom of Fig. 5b: (3) the maximum stress in each
beam is equal to the limiting stress. In other words the optimum structure is statically
determinate (property 2) and fully stressed (property 3).

The methodology derived in this work allows us to treat the beam problem as a
generalized truss. The propped cantilever has one degree of static redundancy since it is
composed of four clements (four static unknown) for which we cun write only three nodal
equilibrium equations. Since it is subjected to one loading condition only. we obtain the
well-established rule in truss design that under a single loading condition. the optimum
structure is statically determinate and fully stressed (see Rcinschmidt et lIl.. 1966). In fact
the optimum design cun be reached very easily using the stress-ratio method.

Such a result could not have been obtained without the present theory. The bimodal
mathematical programming formulation can reach a statically determinate solution only
by driving section BC to zero. thus producing the simple cantilever AB. However the
optimum weight of this structure. 0.5L11~/P. is larger than the result in eqn (24).
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6. THE BUTIERFLY SHEAR BEAM

What has been established up to this point leads us to the tentative conclusion that
improved results could be expected when designing beam structures with unimodal sections.
It will be argued that the small reduction in volume obtained in the unimodal. propped
cantilever example does not warrant the use of such elements. The purpose of this section
is to show that the employment of "butterfly" shear beams instead of uniform shear beams.
yields substantial additional reduction of the volume of the structure.

A common rule of thumb to reduce structural weight is to increase the stress levels in
the structure as much as possible without violating the constraints. In other words. the
implied purpose is to design structures which are in some sense "as close as possible" to
being fully stressed. Herein lies the intrinsic efficiency of the truss element as compared to
the bimodal beam element. The truss element is uniformly stressed. The stress constraint.
if active in a truss element. is active all over the length of the element. The bimodal beam
element however is usually active only on a particular section of the element. The other
cross-sections of the element experience lower stress levels. By employing unimodal elements
we have come nearer to a state of uniform stress. The moment beam is uniformly stressed.
The shear beam however still has linearly varying stress levels with extremum values at the
end-sections only. rt is to be expected that a shear beam with uniform stresses will therefore
furnish better structural results.

To this respect consider the beam element drawn in Fig. 6. This is an element of
constant height with "butterfly" shaped flanges. The flanges are linearily tapered with zero
width in the middle of the element (at the hinge location) and maximum width at the
element ends. Neglecting the contribution of the web to the bending stiffness of the element,
the butterfly shear element has the following stress-strain relation

(26)

where I is the moment of inertia at the beam ends. The stifl'ness of the butterl1y beam is
thus 2/3 the stifrness of the uniform shear be'llll with the same EI [elln (8b»). The volume
of the bUllerl1y beam is half the volume of the corresponding uniform shear beam. Since
the ratio of the bending moment over the section modulus is constant along the element.
the bUllerlly beam is a uniformly stressed clement.

The dlcct of employing butterfly beams is immediate. If we replace the uniform shear
beams by butterfly beams in the example of the propped cantilever (Fig. 5b). the optimum
value becomes

(27)

which is an improvement of 40.5% over the volume of the optimum bimodal design
(O.J5Lh~II/). One will rccull that the optimum design with uniform shear beams gave only
a 4.8% volume reduction. The low volume (27) is <l direct consequence of the fact that the

Fig. 6. The butterlly shear be'lm.
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f--L ·1· L-I--L--!
Fig. 7. A fixed-fixed beam exampk.

optimum design is now literally. fully stressed. Similar results were obtained in further
examples. some of which are reported in the next section.

7. NUMERICAL RESULTS

The effectiveness ofemploying unimodal elements in beam design problems was tested
more thoroughly in the case of a beam tixed at both ends and loaded at one third of the
span. measured from the extremities. by concentrated forces PI. P2 and by couples MI' M2

(Fig. 7). Twenty combinations of loadings were considerd by arbitrarily assigning values
one or zero to the forces and to the couples (Table I). Six loadings were single loading
conditions and 14 loadings were double loading conditions. The structure was designed for
minimum volume and subjected to stress constraints. equal in tension and compression.
The beam elements are of constant depth and the design variables are the moments of
inertia in sections AB. BC and CD of the beam.

Four element types were compared: bimodal uniform, bimodal tapered. unimodal
uniform and unimodal butterfly. The bimodal uniform element is the classical uniform
beam. The three design variables of the problem are the cross-sectional areas of the flanges
of the three elements. The bimodal tapered element has a flange which varies linearily
between the two ends of the clement. This case presents four design variables: the cross
sectional areas at sections A. 8. C and D. The unimodal uniform structure is composed of
silt uniform unimodal clements. a unimodal moment and a unimodal shear element for
e:lI:h St.'Ction. This structure thus has six design variables. The unimodul bUtlerlly structure
is similar to the previous one. except for the shear clements which arc now butterfly shear
clements. This design type has also silt design vuriablcs.

Taba: I. Comparison of optima of the: tilled-fixed beam

Loading Bimodal Unimodal

First S...cond Uniform Tapcr\.'d Uniform Buth:rl1y

Case 1', I') M, M) 1', 1') "", ""2 Type I Type 2 Type 3 Type 4

I 0 0 0 () 0 0 0 100 62 92 59
2 I I 0 0 0 0 0 0 100 63 l«) 54
3 I 0 I 0 0 0 0 0 100 59 lit 6&
4 0 I 0 I 0 0 0 0 100 65 93 68
5 0 0 I 0 0 0 0 0 100 65 99 69
6 I 0 0 I 0 0 0 0 100 77 86 63
7 I 0 0 0 0 0 I 0 100 711 107 74
K I 0 0 0 0 I 0 0 100 81 90 55
9 I 0 0 0 0 0 0 0 100 78 97 66

10 0 I I} 0 0 I} 0 I 100 78 107 73
II 0 0 I 0 0 I} 0 I 100 90 89 63
12 I I 0 0 0 0 I 0 100 78 91 5')
13 0 I I 0 I I} 0 0 100 84 95 58
14 0 1 I 0 0 0 0 I 100 81 103 61!
15 0 0 I I 1 0 0 0 100 88 124 64
16 I 0 I 0 0 I 0 0 100 75 90 53
17 I 0 I 0 0 0 0 I 100 78 92 60
18 I I I 0 0 0 0 I 100 82 99 63
19 I 1 0 I 0 0 I 0 100 74 88 63
20 I 0 I I 0 I 0 0 100 87 116 58
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Optimum Structure Weight

£ I 100

Type 0

E J 94

Type

t J 75

Type 2

84

Type 4

Fig. II. Opliln;i1I"youls or a Ibcd-li~cd be"ln.

The bimod<rl h\pered clement was introduced in order to provide a fair competition to
the unimod;t1 buttcrlly she;tr elcment. The stiffness m;ttrix of this clement was derived using
a linite demcnt approach. with Hermite interpolution functions for the displ;lcements. The
minimization Was performued using the FSD iterative method (Rcinschmidt el al.. 1966).
We thus compare ncar optimum results; however. it is a reasonable assumption that the
established trends arc probably not alfected by this approximation.

Table 1 gives ;\ summary of the results. Additionul information can be found in
Benyamini and Bousso (1989). The optimum values were, for each case, normalized with
respect to the weight of the uniform bimodal case. Comparing the uniform bimodal beams
with the uniform unimodal beams (types one and three). we notice that the improvement
is not very significant and in many cases, even negative. The unimodal bUtlerlly dements
(type four) yield a dram.ttic weight reduction when compared to the uniform bimodal
clements (type one).

The optimum configurations are, as expected, shared between the tapered bimodal
elements (type two) and the butterfly unimodal elements (type four). with a 17/3 rating in
favor of the laller. The unimodal butterlly elements either yield about the same weights as
the tapered elements or produce improved results as in case eight (Fig. 8). Note, the
structure has, in this c.\se, shed the moment clements in spans AB and CD thus producing
a statically determinate structure. This feature was established in many cases, which leads
us to a preliminary linding that the usc of unimodal clements is especially interesting in the
case where a statically determinate optimum can be obtained.

8. CONCLUSIONS

The main purpose of this paper was to unify the analysis of framed structures by
modifying the treatment of the bending clements. A suitable change of basis allowed us to
uncouple the pure bending mechanism and the "pure" shear mechanism ofa beam clement.
Consequently a straight prismatic clement in 3-dimensional space became structurally
equivalent to six unimodal elements mounted in parallel. As a result, a framed structure
cun now be viewed as a generalized truss and analyzed accordingly in a unified manner. In
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addition. the shear force appears explicitly in the analysis equations thus giving it a proper
representation along with the axial. torsion and moment loads.

It was also shown that the uncoupling of the moment and shear modes could lead to
improved designs of beam structures through the use of unimodal moment and shear
elements instead of the classical beam element. Preliminary results seem to indicate that
significant weight reduction can be expected when the moment element is used in conjunction
with a butterfly shear element. Such an assembly annuls. in fact. the inherent inefficiency
of a beam element since the unimodal elements are uniformly stressed. The fact that the
unimodals are not significantly better than the tapered elements is. in the author's opinion.
not very relevant from an engineering viewpoint. Tapered elements have to be machined
on order. The unimodals on the contrary can be factory produced and shipped with standard
cross-sections thus allowing the designer to select appropriate beams from a catalogue.
much in the same way as is done nowadays for bimodal beams.

In practice. the unimodal elements must be considered with some care. They require
frictionless mechanisms at mid-span and the end sections of the elements must be inter
connected in a rigid manner in order to have identical lateral displacements and rotations.
This is not a trivial task. In addition. the theory does not as yet tackle lateral stability
considerations. and local flange and web buckling. However. the potential weight reduction
obtained through the unimodal elements does warrant further investigation.
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