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Abstract—A uniform prismatic elastic element in small displacements theory can be modeled as
consisting ol extension. torsion and flexural elements acting in parallel. The extension and torsion
elements are unimodal, whereas the flexural elements are bimodal. due to the combined action of
bending moments and shear forces. This dissimilarity between the elements is the source of incon-
sistency between the analysis of a truss and a framed structure, especially in a force approach. Itis
shown that by an appropriate change of basis. one can uncouple the flexural element into a unimodal
moment element which carries the average moment of the element, and a unimodal shear element
which carries the shear force and related moment. As a result any framed structure can be viewed
as a generalized truss and analyzed accordingly in a standard form.

It is further shown that it is possible to physically construct a moment element and a shear
clement, both exhibiting unimodal deformation patterns. Consequently one can replace a classical
beam clement by a4 moment element and a shear element assembled in parallel. The approach is
tested numerically in the case of beams of constant height subjected to several loading conditions.
Preliminary results indicate that in theory, substantial weight reductions can be obtained when
designing structures composed of parallel unimodal clements,

L. INTRODUCTION

Consider a uniform, prismatic, straight clement connected to nodes 4 and 8 in 3-dimen-
sional space. It is assumed that the clement cross-section exhibits two planes of symmetry
and the element is loaded only at its extremities. Within the small displucements theory of
structural analysis and neglecting the effect of deformations due to shearing stresses, if the
six nodal displacements of cach node are given arbitrary valucs, the clement deformation
pattern can be defined by the generalized strain vector e

e=(0 Oy 0w a 0, ()u:)T n

where d is the element total elongation, 04, and 8y, are the end-rotations with respect to
the chord AB in the first plane of symmuetry. 2 is the relative torsion rotation of nodes A
and B, and 0,, and 0y, are the end-rotations with respect to the chord AB in the second
plune of symmetry.

Corresponding to the generalized strain vector we have the generalized stress vector t

t=(n my my g My M), (2)

where n is the axial load in the clement, m,, and my, arc the end moments in planc onc, ¢
is the torsional moment and m,, and mg, are the end moments in plane two.

The six strain components are related to the six stress components by the lincar
constitutive law

t = Se 3)

which are the following quasi uncoupled equations
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where S is the element natural stiffness matrix. L is the element length. £ is Young's
modulus. G is the shear modulus. A is the element cross-sectional area, J is the torsional
constant and /, and /. are the moments of inertia in both planes of symmetry. We notice
the uncoupling of the stretching mode. twisting mode and bending modes in both planes
of symmetry. Stretching and twisting are both unimodal patterns since they are described
by one generalized strain (J and x). Bending, however, is bimodal since it is defined in each
plane of symmetry by two strain components (04, and 8g,).

The subject matter of this paper is concerned with the uncoupling of the bending
pattern into two orthogonal deformations, a pure bending mode and a “pure™ shear mode.
This will lead to full uncoupling of all six deformation patterns of the prismatic element,
which will result in a unified and also simplified approach to the analysis of framed
structures. It will also be shown more specifically that the uncoupling of the moment and
shear deformations may lead to improved designs of beam structures.

Before concluding this section, a last remark. Over the years of teaching structural
theory 1 was asked by many a student, the reason why the shear foree does not appear in
the stress strain relations (3). The painstaking reply would invariably be that the shear foree
is implicd in the end moments m, and my. This would however not quench their curiosity —
the shear force was still missing in ¢gn (3) even after the explanation. The present theory
makes the shear foree appear explictly in the stress strain relations and in the author's view,
this scttles the question.

2. UNCOUPLED BENDING DEFORMATIONS

Consider the stress—strain relationship of the bending deformation in one of the planes
ol symmetry of an clement (4b). Symbolically, these equations are represented by the stress-
stritin relations (3) where we consider only the two equations pertinent to bending, in
one plane of symmetry. An eigenvalue analysis of the bending stiffness matrix yields the
characteristic eigenvalues 2(£1/L) and 6(E1/L), and the corresponding eigenmatrix

0.5 0.5
r=[—0.5 0.5]‘ )

We have chosen this cigenmatrix in order to relate the eigenvectors to appropriate structural
quantitics, as will become clear in the following. The two cigenvectors correspond respec-
tively, to a symmetric and antisymmetric deformation pattern.

Performing the change of basis (6a) and using the eigenmatrix (5), we obtain the
transformed stress vector (6b) and stiffness matrix (6¢)

c=1Tle¢ (6a)
t =Tt (6b)
S =Tr'ST. (6¢)

where tagged quantities are written in transformed coordinates.
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Solving eqn (6a) and performing the matrix multiplications in eqns (6b, 6c) yields the
expressions of the transformed strain and stress components and the diagonal stiffness

matrix
e {0t {ol
S fawnit S
«-2 9 o

To gain insight into eqns (7). consider the deformation pattern of a beam element in Fig.
ta. The original generalized strains and stresses are the relative end-rotations (6,.60g) and
end moments (m,, my) of the beam. We know that these quantities are coupled. Through
the change of basis (7) we have established that the beam deformation is in fact the sum of
two orthogonal deformation patterns, a symmetric mode characterized by the generalized
strain ¢, and an antisymmetric mode characterized by the generalized strain . The physical
interpretation of these strains is indicated in the figure. From eqns (7b), it is straightforward
that the generalized stress component in the symmetric mode is the average bending moment
m of the beam, and that the stress component in the antisymmetric mode is sL/2 where s
is the constant shear force of the beam span.

Finally, since the transformed stiffness matrix is diagonal, we obtain the following,
uncoupled stress—strain relations for bending

nm= (El)(/) (8a)
L

sk El

L (), o

Focussing our attention on the moment distribution diagrams in Fig. | we notc that
the symmetric mode carries the average bending moment, without shear, and that the
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Fig. . Bending clement deformation pattern.
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antisymmetric mode carries the shear force and corresponding differential bending distri-
bution. The sum of the two orthogonal moment diagrams is equal to the moment diagram
of the beam. Similarily the sum of the two orthogonal deformation patterns is equal to the
deformation of the beam element.

We have established that in essence. the bending behaviour of a beam element is
composed of two orthogonal patterns. The symmetric deformation causes the beam to
deform in pure moment (8a). The antisymmetric deformation (8b) causes the beam to
deform in “pure” shear. Rewriting eqns (1). (2) and (4) using the new bending coordinates.
we obtain the following strain, stress and diagonal stiffness components

e=( & ¥ oz ¢ YT (9a)

siL LY
tz(n m, -g—;—— q m; S;L) (9b)

9¢)

(EA El, 3El, GJ EI, 351:)"

These are the six orthogonal deformation patterns of the beam element: extension and
torsion. and moment and shear in both plancs of symmetry.

3 A UNIFIED THEORY OF STRUCTURAL ANALYSIS

In the classical theory of prismatic structures it is recognized that a member can be
vistalized as being composed of four generic elements, attached in paralle] to the element
nodes and which deform in orthogonal patterns @ extension, torsion and bending in orthog-
onal plancs of symmetry. The stretching and torsion deformations are unimodal and can
be treated in a similar manner. Bending, however, is different. It is influeaced by two
coupled quantities, the bending moment and the shear foree.

The coupling of the bending moment and the shear foree in beam clements is the source
of some dissimilarity between the analysis of redundant trusses and the analysis of redundant
beam structures when using a force method. A statically redundant truss can usually be
rendered determinate by removing a suitable subset of superfluous bars. In the case of
beams however, as shown for instance in McGuire and Gallagher (1979), one introduces
“cuts” in the structure releasing cither stress resultants or support reactions. The basic
structure here is not u subset of the original structure but rather the original structure, cut
open at distinet locations. The difference is not merely semantic. One has to include the
unknown support reactions in the equilibrium equations, a requircment which is not
neeessary in a truss-type analysis. This is the source of a score of algorithmic complications
in a computerized implementation of the process. In the present approach, and after the
change of coordinates at the beam element level, we can formulate a unified theory of
structural analysis where all the generie elements are treated in exactly the same manner.

A straight prismatic member can be modeled as six unimodal, orthogonal clements
connected in parallel. Each clement has its own natural stiffness &, (9¢). If the end nodes
are given small arbitrary displucements, cach clement deforms in its natural strain mode e,
(9a). The end loads acting on cach clement are 1, = k¢, The strain encrgy in the member
is the sum of the strain encrgies of the six clements

I &
=3 Z (0

The analysis of a prismatic structure is now, in all respects. similar to the analysis of a
generalized truss where each member is decomposed into six paraliel elements. Letuand p
be the N-vectors of unconstrained nodal displacements and nodal loads, respectively, in
global coordinates. Let S be the unassembled diagonal matrix of the stiffness of the clements
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of the structure (size = 6M where M is the number of members). and let t and e be the
corresponding generalized stresses and deformations of all the elements. The basic equations
for analyzing the structure are

Qt = p Equilibrium
Ru =e Strain-displacement

Se = t Constitutive law, {an

where Q is the statics matrix and R = QT is the kinematics matrix. Simple substitution leads
to the equilibrium equations of the Displacement method

Ku=p; K=QSR. : (12)

The elegance of the present approach emerges even more in the Force method. The
degree of statical redundancy of the structure is (6M — N). The structure can be made
determinate by (physically) removing (6M — N) redundant elements. This corresponds to
finding an N x N non-singular submatrix in Q. Any simplex type algorithm can be employed
for that purpose. The eliminated elements may include axial. moment, shear or torsion
clements from any of the members of the structures. Matrices Q and S and vectors e and t
are subdivided accordingly. Using subscript b for the basic structure and subscript r for the
redundant elements, eqns (12) can be rewritten as detailed in Fuchs (1982)

thh + Q‘t, =p ( 13a)
Ru=c¢,:. Ru=e (13b)
Seen =t,: S,e, =t,. (13¢)

Compatibility in terms of element strains is obtained by climinating the nodal displacements
from egns (13b)

¢, = R,R, 'c,. (14)
which after substitution yields the compatibility equations in terms of clement stresses
(F.+RR,'F,Qy 'Q)t, = RR, 'FQ, 'p (15)
where the Fs are the diagonal matrices of element flexibilities.

To complete the picture, consider the computation of a nodal displucement by the unit
load method

M L !
u, = Z Z k - lrm':;fxl (16)
mul gml Nim

where subscript m is the member number, subscript 7 is the unimodal clement number and
the 1) arc clement stresses due to a unit foad in the j dircction. The summation includes

terms of the type
/L
3 (EI) Sastt, 7

which are the contributions of the shear forces to the total deformation of the structure,
Shear deformation is thus given its proper place in structural analysis. These deformations
originate from the normal stresses due to shear and cannot be neglected. The deformations
derived from the tangential stresses due to shear are those which are usually omitted.
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4. UNIMODAL BEAM ELEMENTS

The main result obtained so far, is that a prismatic beam element (bimodal element)
is mathematically equivalent to two unimodal elements mounted in parallel, a moment
element and a shear element. When the nodes are given symmetric rotations [y = —#, in
eqn (7a)] the moment element is strained and reacts in pure bending with a stiffness given
by eqn (8a). The shear element remains unstrained ( = 0) and consequently has zero
stiffness in a symmetric deformation pattern. Similarly. if the nodes rotate anti-sym-
metrically {0, = 05 in eqn (7a)] the shear element is strained and reacts in pure shear. with
a stiffness given by eqn (8b). The moment element is not strained (¢ = 0). i.e. it has zero
stiffness in an anti-symmetric pattern. [f the nodes are given arbitrary rotations, the moment
element takes the symmetric part of the deformation and the shear element takes the anti-
symmetric part of the deformation.

A question which comes to mind is whether the moment element and the shear element
can be given a physical reality. In other words, can we construct @ moment beam and a
shear beam. In the affirmative, a following question would be whether there is any advantage
in using a moment beam and a sheur beam mounted in parallel instead of a regular bimodal
beam. We will address the first of these two questions in this section.

Consider a straight uniform beam with a frictionless. normal guide at mid-span (Fig.
2a. left). The stress—strain relations of this element are

my{ Ef I —1110,
{mn}— _E[“‘l ]}{”H}' (%)

Applying the change of basis (5)-(7) to these cquations one obtains the modal equilibrium
cquations

m -
ELjl 0o
Lol g

~

These are exactly the equations of 4 moment element. This element has a stiffness of £1/L
in pure bending, and no stiffness in pure shear. Figures 2b and 2¢ show clearly that this
beam has a deformation in pure bending, but has a rigid-body displacement in pure shear.

Consider now a uniform beam with a frictionless hinge at mid-span (Fig. 2a, right).
The stress- strain relations are in this case

MOMENT _ELEMENT SHEAR ELEMENT
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Fig. 2. Moment element and shear element.
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which after the same change of basis, produces the modal equilibrium equations

"1 Erfo olfe
g =T[0 e @b

As expected these are the equations of a shear element. The element has a stiffness 3£//L
in pure shear and no stiffness in pure bending. As can be seen in Figs 2b and 2c, the beam
deforms only when in pure shear but has a rigid-body displacement in pure bending.

If we add the load—deformation equations of the moment element and the shear
element [eqns (18) and (20)], we obtain the relations of the uniform beam (4b). All this
leads to the conclusion that one can actually replace a uniform beam by a moment beam
and a shear beam (with same cross-sectional properties) mounted in parallel. The boundary
conditions of both beams are such that they must rotate with the same angles, 8, and 6.
The moment beam will carry the average moment m and the shear beam will carry the
shear s and related differential moments.

The displacement of each beam is, in general, composed of its natural deformation
pattern plus a rigid-body displacement for which the beam presents no stiffness. Consider
a typical assembly of a moment beam and a shear beam (Fig. 3). When subjected to
arbitrary end displacements (3,-94), the rigid-body motions result in a slope discontinuity
(3, —3d,) at mid-span in the shear beam and a transverse displacement discontinuity (35— J,)
at mid-span in the moment beam, given by

5
a_;—q,}= 0t 0 -l du (. 22)
ds—0, I 1]} oy
O
A typical displacement pattern of a cantilever composed of parallel unimodal beams is also

shown in Fig. 3. The tip displacement is identical to what would have been obtained with
a regular (bimodal) uniform beam of the same stiffness, £/.
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I

Fig. 3. Tip-loaded unimodal cantilever beam.

SAS 27:5-0
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Fig. 4. Analysis of a propped cantilever.

5. DESIGNING WITH UNIMODAL BEAM ELEMENTS

Consider the example of a propped. cantilever beam of uniform stiffness £/, spun L
and subjected to a concentrated force P at mid-span (Fig. 4). If we replace section BC of
the structure by a pair of unimodal beams with same E7, we emulate the structural response
of the original beam. The nodal displacements at B and C and the bending moment diagram
in section AB are the sume. The bending moment in section BC is split between the moment
beam and the shear beam. At first glance there seems to be no obvious reason to replace
the original section BC by a pair of unimodal beams, since by doing so, one merely doubles
the weight of that section.

Howcever, one will notice that cach one of the unimodal beams is significantly over-
designed when compared to the original section, since the maximum bending moment in
the unimodal beams is half’ the maximum bending moment in the original beam (0.078
compared to 0.156). One should bear in mind that the unimodal beams have the same £7
as the original beam. There is therefore room to reduce the stiffnesses of the unimodal
beams and increase their stress levels. Thus by using unimodal beams we design a more
flexible structure while maintaining the weight of the original structure,

Further weight reduction can be obtained from the following argument. Since the
moment and shear beams are two separate entities, there is no need to design both beams
with idenfical cross-sections. One can very well conceive designs with different EYs for the
moment beam and the shear beam. In fact, we will sec in the following that the introduction
of two independent design variables for cach unimodal beam is cardinal for the design of
efficient unimodal beam structures.

For this purpose, consider the design of the propped cantilever, loaded at the mid-
spun (Fig. 5). We will assume that the beam elements are of constant height /i and that the
weight of a beam is proportional to the cross-scctional area of the flanges. In the case of
the classical bimodal beams (Fig. 5a). the design variables are the moments of inertia x,
and x, of sections AB and BC, respectively. The objective function is the volume of the
elements (linear in the design variables) and the constraints of the problem are the maximum
stresses in cach element. The non-dimensional design variables x; and the non-dimensional
allowable stress fi, are defined as

x, =1/ i=1.2
é = B(PLIhY). (23)

where & is the allowable stress (in tension and compression).
The optimum design values and the minimum volume are:

N =0.100/8; vt =005
e* = 0.35LhY/B. 4
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Fig. 5. Optimum design of a propped cantilever.

At the minimum point the stresses o4 and oy reach the limiting stress value. The bending
moment diagram for the optimum design is given in Fig. 5a. Note, the minimum volume
of the two-variable, propped cantilever is 6.7% lower than the minimum volume in the case
of a uniform cross-section along the entire beam, for which we have ¢* = 0.375Lh%/ 8.

Focusing our attention now on the optimum design of a propped cantilever composed
of two pairs of unimodal beams (Fig. 5b), we note that we are in the presence of a
minimization problem with four design variables x, (¢ = 1,4), where the first two variables
are the non-dimensional moments of inertia of the moment and shear beams of section AB,
and the latter two variables are the corresponding moments of inertia of section BC. The
optimum design values for the unimodal arrangement are

xf=00: xI=1/24f
x3=1128; xt=1/24f
v* = 0.333Lh*/B. (25)

It is important to emphasize at this point three propertics of the design: (1) the optimum
value is lower than the optimum design obtained using bimodal elements [eqn (24)] which
is an encouraging result ; (2) the moment beam of section AB has vanished from the design
thus yielding the structure shown at the bottom of Fig. 5b; (3) the maximum stress in each
beam is equal to the limiting stress. In other words the optimum structure is statically
determinate (property 2) and fully stressed (property 3).

The methodology derived in this work allows us to treat the beam problem as a
generalized truss. The propped cantilever has one degree of static redundancy since it is
composed of four elements (four static unknown) for which we can write only three nodal
cquilibrium equations. Since it is subjected to one loading condition only. we obtain the
well-established rule in truss design that under a single loading condition, the optimum
structure is statically determinate and fully stressed (sce Reinschmidt ef al., 1966). In fact
the optimum design can be reached very casily using the stress-ratio method.

Such a result could not have been obtained without the present theory. The bimodal
mathematical programming formulation can reach a statically determinate solution only
by driving section BC to zero, thus producing the simple cantilever AB. However the
optimum weight of this structure, 0.5LA%/f, is larger than the result in eqn (24).
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6. THE BUTTERFLY SHEAR BEAM

What has been established up to this point leads us to the tentative conclusion that
improved results could be expected when designing beam structures with unimodal sections.
[t will be argued that the small reduction in volume obtained in the unimodal, propped
cantilever example does not warrant the use of such elements. The purpose of this section
is to show that the employment of “*butterfly” shear beams instead of uniform shear beams,
yields substantial additional reduction of the volume of the structure.

A common rule of thumb to reduce structural weight is to increase the stress levels in
the structure as much as possible without violating the constraints, In other words. the
implied purpose is to design structures which are in some sense “as close as possible™ to
being fully stressed. Herein lies the intrinsic efficiency of the truss element as compared to
the bimodal beam element. The truss element is uniformly stressed. The stress constraint,
if active in a truss element, is active all over the length of the element. The bimodal beam
element however is usually active only on a particular section of the element. The other
cross-sections of the element experience lower stress levels. By employing unimodal elements
we have come nearer 1o a state of uniform stress, The moment beam is uniformly stressed.
The shear beam however still has linearly varying stress levels with extremum values at the
end-sections only. [t is to be expected that a shear beam with uniform stresses will therefore
furnish better structural results.

To this respect consider the beam element drawn in Fig. 6. This is an element of
constant height with “butterfly” shaped flanges. The flanges are linearily tapered with zero
width in the middle of the element (at the hinge location) and maximum width at the
element ends. Neglecting the contribution of the web to the bending stiffness of the element,
the butterfly shear element has the following stress—strain relation

‘f‘ = (2 1-:{)111 (26)

where £ is the moment of inertia at the beam ends. The stiffness of the butterfly beam is
thus 2/3 the stiffness of the uniform shear beam with the same £7 fegn (8b)]. The volume
of the butterfly beam is half the volume of the corresponding uniform shear beam. Since
the ratio of the bending moment over the section modulus is constant along the clement,
the butterfly beam is a uniformly stressed element.

The eilect of employing butterfly beams is immediate. I we replace the uniform shear
beams by buttertly beams in the example of the propped cantilever (Fig. 5b), the optimum
value becomes

v* = 0.2085Lh° /8 (27)
which is an improvement of 40.5% over the volume of the optimum bimodal design

(0.35L1%1f). One will recall that the optimum design with uniform shear beams gave only
4 4.8% volume reduction. The low volume (27) is a direct consequence of the fact that the

Fig. 6. The butterfly shear beam,
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Fig. 7. A fixed-fixed beam example.

optimum design is now literally. fully stressed. Similar results were obtained in further
examples, some of which are reported in the next section.

7. NUMERICAL RESULTS

The effectiveness of employing unimodal elements in beam design problems was tested
more thoroughly in the case of a beam fixed at both ends and loaded at one third of the
span. measured from the extremities, by concentrated forces P,. P, and by couples M,. M,
(Fig. 7). Twenty combinations of loadings were considerd by arbitrarily assigning values
one or zero to the forces and to the couples (Table 1). Six loadings were single loading
conditions and 14 loadings were double loading conditions. The structure was designed for
minimum volume and subjected to stress constraints, equal in tension and compression.
The beam elements are of constant depth and the design variables are the moments of
inertia in sections AB, BC and CD of the beam.

Four element types were compared: bimodal uniform, bimodal tapered, unimodal
uniform and unimodal butterfly. The bimodal uniform element is the classical uniform
beam. The three design variables of the problem are the cross-sectional areas of the flanges
of the three elements. The bimodal tapered element has a flange which varies lincarily
between the two ends of the clement. This case presents four design variables : the cross-
sectional arcas at sections A, B, C and D. The unimodal uniform structure is composed of
six uniform unimodal clements, a unimodal moment and 4 unimodal shear clement for
cach section, This structure thus has six design variables. The unimodal butterfly structure
is similar to the previous one, except for the shear elements which are now butterfly shear
clements. This design type has also six design variables.

Table 1. Compurison of optima of the lixed-fixed beam

Loading Bimodal Unimodal
First Second Uniform Tapered Uniform Butterfly
Casc P, P, M, M, PP, M, M, Typel Type2 Typed Typed
1 1 0 0 0 0 0 0 0 100 62 92 59
2 { ! g 0 0 0 0 0 {00 63 80 54
3 i 0 i 0 g 0 0 0 100 59 1t 68
4 0 1 0 | 0 0 0 V] 100 65 93 68
S 0 0 t 0 0 0 0 [ 100 65 » 69
6 | 0 0 | 0 0 0 0 100 7 86 63
7 ! 0 0 0 0 0 1 0 100 78 107 74
8 i 0 0 0 0 i 0 0 100 g1 90 55
9 ! 1] 0 0 0 Q 0 ¢ 100 78 97 66
1o (4 i 4 0 1] i) 0 i {00 78 107 73
I 0 0 i 0 0 0 0 i 100 90 89 63
12 t I 0 0 0 0 [ 0 100 78 91 59
13 0 | 1 0 ! 0 0 0 100 84 95 58
14 0 I ! 0 0 0 0 1 100 81 103 68
5 0 0 ! | ! 0 0 0 100 88 124 64
16 f 0 i Y 0 i 0 0 100 75 90 53
17 i 0 i 0 0 0 0 { 100 78 92 60
i8 i i i 0 0 Q 0 i 100 82 99 63
9 ] i 0 i 0 0 i 0 100 74 88 63
20 | 0 I I 0 { 0 0 100 87 116 58
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Fig. 8. Optimal layouts of a fixed-fixed beam.

The bimodal tapered clement was introduced in order to provide a fair competition to
the unimodal butterfly shear element. The stiffness matrix of this element was derived using
it finite element approach, with Hermite interpolation functions for the displacements. The
minimization was performucd using the FSD iterative method (Reinschmidt er al., 1966).
We thus compare near optimum results; however, it is a rcasonable assumption that the
established trends are probably not affected by this approximation.

Table I gives a summary of the results. Additional information can be found in
Benyamini and Bousso (1989). The optimum values were, for each case, normalized with
respect to the weight of the uniform bimodal case. Comparing the uniform bimodal beams
with the uniform unimodal beams (types one and three), we notice that the improvement
is not very significant and in many cases, even negative. The unimodal butterfly elements
{type four} yield a dramatic weight reduction when compared to the uniform bimodal
clements (type one).

The optimum configurations are, as expected, shared between the tapered bimodal
elements (type two) and the butterfly unimodal elements (type four), with a 17/3 rating in
favor of the latter. The unimodal butterfly elements either yicld about the same weights as
the tapered elements or produce improved results as in case eight (Fig. 8). Note, the
structure has, in this case, shed the moment clements in spans AB and CD thus producing
a statically determinate structure. This feature was established in many cases, which lcads
us to a preliminary finding that the use of unimodal clements is especially interesting in the
case where a statically determinate optimum can be obtained.

8. CONCLUSIONS

The main purpose of this paper was to unify the analysis of framed structures by
modifying the treatment of the bending elements. A suitable change of basis allowed us to
uncouple the pure bending mechanism and the “pure’™ shear mechanism of a beam element.
Consequently a straight prismatic element in 3-dimensional space became structurally
equivalent to six unimodal elements mounted in parallel. As a result, a framed structure
can now be viewed as a generalized truss and analyzed accordingly in a unified manner. In
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addition, the shear force appears explicitly in the analysis equations thus giving it a proper
representation along with the axial, torsion and moment loads.

It was also shown that the uncoupling of the moment and shear modes could lead to
improved designs of beam structures through the use of unimodal moment and shear
elements instead of the classical beam element. Preliminary results seem to indicate that
significant weight reduction can be expected when the moment element is used in conjunction
with a butterfly shear element. Such an assembly annuls, in fact, the inherent inefficiency
of a beam element since the unimodal elements are uniformly stressed. The fact that the
unimodals are not significantly better than the tapered elements is. in the author’s opinion,
not very relevant from an engineering viewpoint. Tapered elements have to be machined
on order. The unimodals on the contrary can be factory produced and shipped with standard
cross-sections thus allowing the designer to select appropriate beams from a catalogue,
much in the same way as is done nowadays for bimodal beams.

In practice, the unimodal elements must be considered with some care. They require
frictionless mechanisms at mid-span and the end sections of the elements must be inter-
connected in a rigid manner in order to have identical lateral displacements and rotations.
This is not a trivial task. In addition. the theory does not as yet tackle lateral stability
considerations. and local flange and web buckling. However, the potential weight reduction
obtained through the unimodal elements does warrant further investigation.
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